

IGEE 418 - ELE8461 – Electrical Power Generation (Production de l'énergie électrique)

Course Outline Winter 2019

Instructors: Professor François Bouffard, P.Eng. Office: McGill University, McConnell Engineering Building, Room 642 Telephone: 514-398-2761 E-mail: <u>francois.bouffard@mcqill.ca</u>

Offices Hours: By appointment.

Equivalences:ECSE 463Electrical Power Generation (McGill University)ELE 8461Production de l'énergie électrique (Polytechnique Montréal)ELEC 498FElectrical Power Generation (Concordia University)ELE760Production de l'énergie électrique (École de technologie supérieure)GEL-3010Production de l'énergie électrique (Université Laval)6GEI715Production de l'énergie électrique (UQAC)

- **Prerequisites:** A basic course in power system analysis and electromechanical energy Conversion. You should have a basic familiarity with: ac circuit analysis, three-phase systems, basic electromagnetic and electromechanical energy conversion devices.
 - **References:** A. J. Wood & B. F. Wollenberg (1996). *Power Generation Operation and Control,* 2nd ed., New York, NY: Wiley.

G. A. Munoz-Hernandez, S. P. Mansoor & D. I. Jones (2013). *Modelling and Controlling Hydropower Plants*. London: Springer-Verlag

J.-C. Sabonnadière, ed. (2010). Renewable Energy Technologies. John Wiley and Sons.

J. Pyrhonen. (2008). *Design of Rotating Electrical Machines*, Wiley-Inter-Science – Blackwell.

G. C. Stone, E. A. Boutler, I. Calbert & H. Dhirani. (2004). *Electrical Insulation for Rotating Machines Design, Evaluation, Aging, Testing, and Repair*. John Wiley and Sons, IEEE Press.

S. Heier. (2006). *Grid Integration of Wind Energy Conversion Systems*. 2nd ed.

Wiley Inter-Science.

- **Lectures:** Polytechnique Montréal, Pavillon Lassonde Room M-2004 Monday: 9:30 – 12:30
- **Laboratory:** Polytechnique Montréal, Pavillon Principal Room A-328 Contact: Thibault Leyne E-mail: <u>thibault.leyne@mail.mcgill.ca</u>

Course Website : www.moodle.polymtl.ca; browse for ELE 8461, Production de l'énergie électrique

Note: The course website should be used for all communications and questions regarding the course and coursework.

Course Outline: Objectives of the course

The goal of this course is to introduce the fundamental principles and challenges arising in power generation.

The specific course objectives are:

- To understand the principles of operation of electrical power generators and related energy storage assemblies
- To understand the structure and principles of the controls related to electrical power generators and generating stations
- To understand the principles governing the design and sizing of electrical generators
- To understand the principles behind the protection methodologies applicable to electrical generating stations and particularly the generators themselves
- To understand the principles governing generation dispatch, including management of hydro reservoirs and generating units
- To understand the standards governing the integration of electrical power generators to the power grid (grid codes)
- To understand the standards governing the interconnection of dispersed electrical power generation to the power grid (interconnection standards)

Topics covered

- Energy sources
- Principles of design, operation and control of synchronous generators
- Principles of operation and control of wind and solar generators
- Generation planning
- Generating station grid interconnection

	Final examination	40 %
	Mid-term examination	20 %
	Laboratory reports (3)	15 %
Grading Scheme:	Assignments (4)	25 %

Laboratory: Work using computer simulations covers the following topics and applications:

- Design procedures for large hydro generators
- Operation and control of synchronous generators Frequency and voltage controllers
- Wind turbine generators Operation and controls

Laboratory instructions will be available for download from the course website. Students are to work in pairs, and each laboratory team will hand in a single report. Students in the team will receive the same grade. Laboratory reports are due one week after the scheduled laboratory period.

Assignments Assignments will be made available for download about every fortnight. Assignments have to be submitted individually. Assignments will be due within one week.

Wk	Date	Торіс	Inst.	Assignments	Laboratories, seminars, ind. visits
1	7 Jan.	Prime energy sources – Conventional and renewable	FB		
2	14 Jan.	Characteristics and operation of hydro generators	FB	Assignment 1 - Energy sources and electric power production	Seminar 1- Introduction to hydrogeneration plants (HQ Production – Éric Lambert)
3	21 Jan.	Synchronous generators – Steady state operation & modelling I	FB		Lab 1 - Design procedures for large hydro generators
4	28 Jan.	Synchronous generators – Steady state operation & modelling II	FB		
5	4 Feb.	Synchronous generators – Frequency and voltage control	FB	Assignment 2 - Synchronous generator operation and control	Lab 2 - Operation and control of synchronous generators – Frequency and voltage controllers
6	11 Feb.	Static power converters – Principles of operation as grid-connected generators	FB		Seminar 2 - Advanced synchronous generator controls (HQ Production – Éric Lambert)
7	18 Feb.	Principles of wind energy conversion and systems	FT	Assignment 3 - Static power converter operation	Industrial visit 1 – Parc éolien Pierre-De Saurel (PEPdS – Pierre Dion)
8	25 Feb.	Operation and control of grid- connected renewable generation	FB		Industrial visit 2 - Centrale Beauharnois (HQ Production – Éric Lambert)
	4 Mar.	Study break			
9	11 Mar.	Midterm examination	FB		Lab 3 - Wind turbine generators – Operation and controls
10	18 Mar.	Energy storage systems and their role in renewable energy integration	FB		Seminar 3 – Solar farm engineering (CIMA+ – Éric Cantin)
11	25 Mar.	Distributed generation interconnection and grid codes	FB		
12	1 Apr.	Generation operations planning	FB	Assignment 4 – Hydrogeneration planning and storage management	Seminar 4 - Integration of bulk generation into the electric grid (HQ TransÉnergie – Noël Aubut)
13	8 Apr.	Energy system integration	FB		
14	18 Apr.	Final Exam	Exam on all topics		

IGEE 418 – ELECTRICAL POWER GENRATION Detailed Schedule – Winter 2019

Note: The period for exams will take place from April 17th to May 4th, 2019 inclusive.