

Plan de cours

ELE8458-IGEE408 – Électricité industrielle

Département Génie électrique Institut en génie de l'énergie électrique Hiver 2023 3 Crédits 3-1,5-4,5 www.moodle.polymtl.ca

Coordonnées et disponibilités				
Nom	Khaled Arfa			
Bureau	A-343.9.1			
Téléphone	(514) 340-4711 - 4866			
Courriel	Khaled.arfa@polymtl.ca			
Disponibilité	À déterminer			
Salle	À déterminer			
Nom	Alexandre Morin, ing.			
Courriel	Alexandre.Morin@bba.ca			
Disponibilité	Par courriel ou sur le forum du site			
Nom	Robert Villemaire, ing.			
Courriel	nrvillemaire@videotron.ca			
Disponibilité	Par courriel ou sur le forum du site			
Nom	Christian Patenaude, ing.			
Courriel	christian.patenaude@opsis-ese.com			
Disponibilité	Par courriel ou sur le forum du site			
Coordonnateur				
Nom	Khaled Arfa			
Courriel	Khaled.arfa@polymtl.ca			
Personnes-ressources au laboratoire				
Chargé de laboratoire	, , ,			
Répétiteur				
Courriel				
Technicienne				
Courriel	marie-paule.bombardier@polymtl.ca			

Description du cours

Structure des réseaux électriques industriels. Niveau de tension. Installations électriques, codes et normes. Courts-circuits, protection et coordination. Mise à la terre. Qualité de l'onde. Facteur de puissance, tarification et gestion de l'énergie électrique.

Qualités du BCAPG						
1 Connaissances en génie AP	2 Analyse de Problèmes AP	3 Investigation AP	4 Conception AP	5 Utilisation d'outils d'ing. AP	6 Travail ind. et en équipe	
7 Communication	8 Professionnalisme	9 Impacts soc. et environn.	10 Déontologie et équité	11 Économie et gestion de projets	12 Apprentissage continu	

Note: Une version détaillée de ce tableau est disponible à la fin du document. Vous pouvez également regarder cette vidéo explicative sur les 12 qualités.

COURS PREALABLES	COURS COREQUIS	COURS SUBSEQUENTS
ELE3201, ELE3400 et 70 crédits pour les étudiants au baccalauréat		

Objectifs d'apprentissage					
Objectifs	Correspondance avec les qualités du BCAPG				
Ce cours vise l'acquisition de connaissances fondamentales et appliquées des réseaux de distribution électrique industriels. Ce cours permettra aux étudiants de :					
décrire la structure de fonctionnement des réseaux de distribution industriels ;	1.3, 2.1, 2.2, 2.3, 2.4, 2.5				
 concevoir un réseau élémentaire de distribution, incluant le choix du matériel et d'en évaluer les performances 					
électriques, dont les bilans énergétiques ; élaborer un devis technique, effectuer les analyses	4.1, 4.2, 4.3				
pertinentes à une application spécifique.	3.1, 3.2, 3.3, 3.4, 3.5, 3.6				

Évaluation						
NATURE	NOMBRE	Mode de réalisation (Individuel/équipe)	PONDÉRATION	DATE	QRD*	
Quiz "Autoévaluation des acquis"	1	Individuel	4%	Voir calendrier des rencontres		
Devoirs	4	Individuel	28%	Voir calendrier des rencontres		
Travaux pratiques	3	Équipe	28 %	Voir calendrier des rencontres		
Examen final	1	Individuel	40%	Non disponible		

^{*} Qualité Requise des Diplômé.es

Critères d'évaluation

Quiz "Autoévaluation des acquis" :

- Le quiz "Autoévaluation des acquis", sur Moodle, comporte des exercices avec choix de réponses. Les exercices proposés sont conçus de façon à vous inciter à revoir les acquis nécessaires à la compréhension de la matière couverte durant la session.
- Une seule tentative est autorisée durant la période de disponibilité du quiz.
- La validation de la tentative n'est pas automatique, elle est de la responsabilité de l'étudiant(e). Aucune justification n'est acceptée en cas de non-validation de la tentative.

Travaux pratiques et devoirs :

- La présence des étudiants est obligatoire durant les séances de travaux pratiques. Aucun retard n'est toléré. Le port des lunettes de sécurité est obligatoire au laboratoire A-236.
- Aucun retard n'est toléré dans la remise des devoirs et des rapports de laboratoire.
- Les devoirs et les rapports des TP1, TP2, TP3 et TP4 doivent être déposés sur Moodle au plus tard à la date de remise correspondante.
- Dans la mesure du possible, les devoirs et les travaux pratiques corrigés vous seront rendus dans un délai de deux semaines.

Examen Final:

- L'examen final porte sur toute la matière vue durant la session.
- L'examen final est en présentiel, dans une salle informatique.
- Le site du cours, adapté à l'examen, est accessible et aucune autre documentation n'est autorisée.
- Seules les calculatrices non-programmables sont autorisées durant l'examen.
- En cas d'absence motivée à l'examen final, l'épreuve différée se déroule dans les mêmes conditions que l'épreuve régulière.
- la période d'examens finaux est du 21 avril au 5 mai 2023 inclusivement.
- Les cahiers d'examen seront disponibles pour révision, sur demande, selon la procédure expliquée au moment voulu.

Documentation

Notes et diapositives des professeurs

Manuel: Électrotechnique de R.-P. Bouchard et Guy Olivier.

Documents de référence : Electric Power Distribution for Industrial Plants (IEEE Red Book); Code canadien de l'électricité.

Calendrier des rencontres						
Date	Cours (9h.30 à 12h20, M-2004)	Travaux pratique (13h.45 à 16h.35)	Évaluation			
10 janvier	Introduction du cours. Généralités sur l'électricité industrielle, appareillages, plans et dessins, normes et standards (K. Arfa)		Mise en ligne du quiz : Autoévaluation des acquis. Le mercredi 11/01/2023 à 18 h 30			
17 janvier	Charges industrielles (K. Arfa)		Date limite de remise du quiz : Autoévaluation des acquis. le mercredi 18/01/2023 à 18 h.30			

24 janvier	Régimes déformés, harmoniques, normes et standards (K. Arfa)	TP1: Visite de la sous-station du pavillon Lassonde Visite du laboratoire A-236 Gr. 1 (K. Arfa)	
31 janvier	Sécurité électrique (A. Morin)	TP1: Visite de la sous-station du pavillon Lassonde Visite du laboratoire A-236 Gr. 2 (K. Arfa)	
7 février	Installations électriques, codes et normes – Partie 1 (R. Villemaire)	TP2: Calculs d'éclair d'arc électrique - simulation – A-328 Gr. 1 (A. Morin)	Affichage devoir 1 : Charges industrielles, régimes déformés et harmoniques
14 février	Installations électriques, codes et normes – Partie 2 (R. Villemaire)	TP2: Calculs d'éclair d'arc électrique - simulation – A-328 Gr. 2 (A. Morin)	Remise TP1 : Gr. 1
21 février	Compensation de la puissance réactive, résonnance (K. Arfa)	TP3: Charge non linéaire triphasée et transformateurs triphasés – Étape 1 A-236 Gr. 1 (K. Arfa)	Remise TP1 : Gr. 2 Remise TP2 : Gr. 1 Remise devoir 1 Affichage devoir 2 : Code électrique, sécurité électrique
28 février		Semaine de rel	âche
7 mars	Régimes déséquilibrés, qualité de l'onde, normes et standards (K. Arfa)	TP3: Charge non linéaire triphasée et transformateurs triphasés – Étape 1 A-236 Gr. 2 (K. Arfa)	Remise TP2 : Gr. 2 Remise TP3 Étape 1 Gr. 1
14 mars	Le moteur asynchrone triphasé, théorie et pratique, les variateurs de vitesse (K. Arfa)	TP3: Charge non linéaire triphasée et transformateurs triphasés – Étape 2 A-236 Gr. 2 (K. Arfa)	Remise TP3 Étape 1 Gr. 2 Remise devoir 2 Affichage devoir 3: Compensation de la puissance réactive, résonnance, régimes déséquilibrés, qualité de l'onde
21 mars	Le transformateur triphasé, théorie et pratique (K. Arfa)	TP3: Charge non linéaire triphasée et transformateurs triphasés – Étape 2 A-236 Gr. 2 (K. Arfa)	Remise TP3 Étape 2 Gr. 1
28 mars	Calcul du courant de court- circuit (K. Arfa)	TP3: Charge non linéaire triphasée et transformateurs triphasés – Étape 3 A-236 Gr. 1 (K. Arfa)	Remise TP3 Étape 2 Gr. 2 Remise devoir 3 Affichage du devoir 4 Moteur asynchrone triphasé, transformateur triphasé, calcul du courant de court-circuit

4 avril	Protection et coordination de la protection (K. Arfa)	TP3: Charge non linéaire triphasée et transformateurs triphasés – Étape 3 A-236 Gr. 2 (K. Arfa)	Remise TP3 Étape 3 Gr. 1
11 avril	Mise à la terre, facturation, gestion de l'énergie, efficacité énergétique (K. Arfa et C. Patenaude)		Remise TP3 Étape 3 Gr. 2 Remise devoir 4

Fraude : règlement et sanctions

En tant que futur ingénieur, les étudiantes et les étudiants doivent adopter une attitude professionnelle exemplaire. L'article 8 des règlements des études au baccalauréat présente la position de Polytechnique Montréal à l'égard de la fraude sur la base du principe de tolérance zéro. Voici quelques éléments <u>tirés du règlement</u> en vigueur.

Par fraude, on entend toute forme de plagiat, de tricherie ou tout autre moyen illicite utilisé par une étudiante ou un étudiant pour obtenir un résultat d'évaluation non mérité ou pour influencer une décision relative à un dossier académique.

À titre d'exemple, constituent une fraude :

- l'utilisation totale ou partielle, littérale ou déguisée, d'une œuvre d'autrui, y compris tout extrait provenant d'un support électronique, en le faisant passer pour sien ou sans indication de référence à l'occasion d'un examen, d'un travail ou de toute autre activité faisant l'objet d'une évaluation;
- le non respect des consignes lors d'un contrôle, d'un examen, d'un travail ou de toute autre activité faisant l'objet d'une évaluation;
- la sollicitation, l'offre ou l'échange d'information pendant un contrôle ou un examen;
- la falsification de résultats d'une évaluation ou de tout document en faisant partie;
- la possession ou l'utilisation pendant un contrôle ou un examen de tout document, matériel ou équipement non autorisé y compris la copie d'examen d'une autre personne étudiante.

Selon la gravité de l'infraction et l'existence de circonstances atténuantes ou aggravantes, l'étudiante ou l'étudiant peut se voir imposer une sanction correspondant à, entre autres, l'attribution de la cote 0 pour l'examen, le travail ou toute autre activité faisant l'objet d'une évaluation qui est en cause, l'attribution de la note F pour le cours en cause, l'attribution de la note F à tous les cours suivis au trimestre.

Dans le cas d'un travail en équipe, les étudiantes et les étudiants d'une même équipe de travail tel que reconnu par l'enseignant sont solidaires du matériel produit au nom de l'équipe. Si un membre de l'équipe produit et remet un travail au nom de l'équipe et qu'il s'avère que ce travail est frauduleux tous les membres de l'équipe sont susceptibles de recevoir une sanction à moins qu'il soit démontré sans ambiguïté que l'infraction est le fait d'un ou de quelques membres de l'équipe en particulier.

En tant que futur ingénieur, les étudiantes et les étudiants doivent adopter une attitude professionnelle exemplaire. L'article 8 des règlements des études au baccalauréat présente la position de Polytechnique Montréal à l'égard de la fraude sur la base du principe de tolérance zéro. Voici quelques éléments tirés du règlement en vigueur.

Par fraude, on entend toute forme de plagiat, de tricherie ou tout autre moyen illicite utilisé par une étudiante ou un étudiant pour obtenir un résultat d'évaluation non mérité ou pour influencer une décision relative à un dossier académique.

À titre d'exemple, constituent une fraude :

- l'utilisation totale ou partielle, littérale ou déguisée, d'une œuvre d'autrui, y compris tout extrait provenant d'un support électronique, en le faisant passer pour sien ou sans indication de référence à l'occasion d'un examen, d'un travail ou de toute autre activité faisant l'objet d'une évaluation;
- le non respect des consignes lors d'un contrôle, d'un examen, d'un travail ou de toute autre activité faisant l'objet d'une évaluation;
- la sollicitation, l'offre ou l'échange d'information pendant un contrôle ou un examen;
- la falsification de résultats d'une évaluation ou de tout document en faisant partie;
- la possession ou l'utilisation pendant un contrôle ou un examen de tout document, matériel ou équipement non autorisé y compris la copie d'examen d'une autre personne étudiante.

Selon la gravité de l'infraction et l'existence de circonstances atténuantes ou aggravantes, l'étudiante ou l'étudiant peut se voir imposer une sanction correspondant à, entre autres, l'attribution de la cote 0 pour l'examen, le travail ou toute autre activité faisant l'objet d'une évaluation qui est en cause, l'attribution de la note F pour le cours en cause, l'attribution de la note F à tous les cours suivis au trimestre.

Dans le cas d'un travail en équipe, les étudiantes et les étudiants d'une même équipe de travail tel que reconnu par l'enseignant sont solidaires du matériel produit au nom de l'équipe. Si un membre de l'équipe produit et remet un travail au nom de l'équipe et qu'il s'avère que ce travail est frauduleux tous les membres de l'équipe sont susceptibles de recevoir une sanction à moins qu'il soit démontré sans ambiguïté que l'infraction est le fait d'un ou de quelques membres de l'équipe en particulier.

Ressources et services pour les étudiantes et étudiants

Le <u>Service aux étudiants</u> (SEP) est constitué de professionnels qualifiés et d'une Escouade étudiante, dédiés à favoriser votre bien-être et votre réussite à Polytechnique Montréal, autant sur le plan académique, personnel que social. Que ce soit sous la forme de rencontres individuelles, d'ateliers pratiques ou de programmes tels que le tutorat et le mentorat, les services offerts vous aideront à vous épanouir à votre plein potentiel durant vos études à Polytechnique Montréal. N'hésitez pas à les contacter. Vous avez tout à y gagner !

Le <u>Bureau d'intervention et de prévention des conflits et de la violence</u> (BIPCV), vous accueille, vous guide et vous soutient en matière de violence à caractère sexuel, harcèlement ou tout enjeu relatif au respect des personnes. Le BIPCV est un bureau indépendant, assurant un service respectant la confidentialité et une écoute sans jugement. Contactez-les: bipcv@polymtl.ca 514 340 4711 Poste 5151. En savoir plus sur leurs services et ressources:

Qualités requises des diplômé.es par le BCAPG

*: IN = introduction, AP= approfondissement et CA=contrôle des acquis

	Qualité	Déclinaison	IN, AP, CA (*)
1	Connaissances en génie : connaissance,	1.1 Démontrer des connaissances de base en	
	à un niveau universitaire, des	mathématiques et en sciences	
	mathématiques, des sciences naturelles et des notions fondamentales de	1.2 Démontrer des connaissances de base en génie	
	l'ingénierie, ainsi qu'une spécialisation en génie propre au programme.	1.3 Démontrer des connaissances avancées en génie	АР
2	Analyse de problèmes : capacité	2.1 Identifier et formuler un problème	AP
	d'utiliser les connaissances et les principes appropriés pour identifier,	2.2 Explorer des approches de résolution et planifier la démarche	АР
	formuler, analyser et résoudre des	2.3 Conceptualiser ou modéliser le problème	AP
	problèmes d'ingénierie complexes et en	2.4 Produire des résultats	AP
	arriver à des conclusions étayées.	2.5 Valider ses résultats et recommander	AP
		2.6 Analyser l'incertitude, la sensibilité et les limites des approches	
3	Investigation : capacité d'étudier des	3.1 Formuler des hypothèses testables	AP
	problèmes complexes au moyen de	3.2 Faire la revue de la documentation existante	AP
	méthodes mettant en jeu la réalisation	3.3 Planifier et préparer des essais	AP
	d'expériences, l'analyse et	3.4 Exécuter l'expérimentation	AP
	l'interprétation des données et la	3.5 Analyser les résultats expérimentaux	AP
	synthèse de l'information afin de formuler des conclusions valides.	3.6 Vérifier les hypothèses et argumenter	AP
4	Conception : capacité de concevoir des solutions à des problèmes d'ingénierie	4.1 Identifier les besoins, requis et fonctions	AP
	complexes et évolutifs et de concevoir des systèmes, des composants ou des	4.2 Modéliser les éléments à concevoir	AP
	processus qui répondent aux besoins	4.3 Procéder à la conception	AP
	spécifiés, tout en tenant compte des risques pour la santé et la sécurité	4.4 Considérer les relations systémiques internes/externes	
	publiques, des aspects législatifs et réglementaires, ainsi que des incidences	4.5 Évaluer et itérer	
	économiques, environnementales, culturelles et sociales.	4.6 Innover dans sa conception	
5	Utilisation d'outils d'ingénierie : capacité de créer et de sélectionner des	5.1 Évaluer et sélectionner les outils appropriés	AP
	techniques, des ressources et des outils	5.2 Appliquer un outil d'ingénierie	AP
	d'ingénierie modernes et de les appliquer, de les adapter et de les	5.3 Créer ou adapter un outil	
	étendre à un éventail d'activités simples ou complexes, tout en comprenant les contraintes connexes.	5.4 Intégrer des outils	
6	Travail individuel et en équipe : capacité	6.1 Établir et remplir son rôle dans l'équipe	
	de fonctionner efficacement en tant que	6.2 Interagir en équipe	
	membre ou chef d'équipe, de préférence	6.3 Contribuer au fonctionnement de l'équipe	
	dans un contexte de travail multidisciplinaire.	6.4 Contribuer à l'évolution de l'équipe	
7	Communication: habileté à communiquer efficacement des concepts d'ingénierie complexes, au sein	7.1 Lire et rédiger de la documentation	
	de la profession et au public en général, notamment lire, rédiger, parler et écouter, comprendre et rédiger de façon	7.2 Préparer et donner une présentation	
	efficace des rapports et de la documentation pour la conception, ainsi qu'énoncer des directives claires et y donner suite.	7.3 Adapter son discours selon la situation	
8		8.1 Reconnaître l'agir professionnel	

	Qualité	Déclinaison	IN, AP, CA (*)
	Professionnalisme : compréhension des rôles et des responsabilités de	8.2 Expliquer les rôles de l'ingénieur	
	l'ingénieur dans la société, y compris le rôle essentiel de protection du public et l'intérêt public.	8.3 Expliquer les responsabilités de l'ingénieur, y compris la protection du public	
9	Impact du génie sur la société et l'environnement : capacité à analyser les	9.1 Connaître les principes du développement durable	
	aspects sociaux et environnementaux des activités liées au génie, notamment comprendre les interactions du génie	9.2 Analyser l'impact socio-économique de son travail	
	avec les aspects économiques et sociaux, la santé, la sécurité, les lois et la culture de la société; les incertitudes liées à la	9.3 Analyser l'impact de son travail sur l'environnement	
	prévision de telles interactions; et les concepts de développement durable et de bonne gérance de l'environnement.	9.4 Évaluer les risques et les incertitudes d'une situation	
10	Déontologie et équité : compréhension	10.1Respecter le code de déontologie	
	et respect des principes d'éthique et de responsabilité professionnelles, ainsi que	10.2Agir avec intégrité et de façon éthique	
	d'équité.	10.3Traiter les situations de façon équitable	
11	Économie et gestion de projets : capacité à intégrer de façon appropriée	11.1Appliquer les principes économiques	
	les pratiques d'économie et d'affaires, comme la gestion de projets, des risques et du changement, dans l'exercice du	11.2Planifier et gérer un projet	
	génie, et de bien tenir compte des contraintes associées à ces pratiques.	11.3Gérer les risques ou le changement	
12	Apprentissage continu : capacité à cerner et à combler ses propres besoins	12.1Identifier et palier les lacunes dans ses savoirs et ses savoir-faire	
	de formation dans un monde en constante évolution, et ce, de façon à	12.2Identifier et combler ses besoins de formation	
	maintenir sa compétence et à contribuer à l'avancement des connaissances.	12.3Identifier les besoins d'avancement des connaissances	